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1. INTRODUCTION 

 

The physical and chemical properties of nanoparticles are completely different from 

those of crystalline bulk solids, strongly varying as a function of size, shape, chemical ordering 

and composition [1]. We now know that the bonding in a small metal or semiconductor cluster is 

different from that in the bulk. An atom at the surface of a large portion of material is different 

from the atom of the same element inside that portion. Additionally, an atom at the smooth 

surface of a sizable single crystal is different from an atom at the surface of a small cluster of the 

same element. Moreover, the properties of a surface atom of a small metal cluster depend on the 

type of support on which it is deposited or whether the cluster is doped with one or a few atoms 

of a different element [2]. 

 There are basically two types of size-dependent effects which dictate the great variety of 

properties present in nanoparticles: those smoothly scalable which are related to the fraction of 

atoms in the surface, and quantum effects that show a discontinuous behavior due to the 

completion of electronic shells on systems with delocalized electrons [3]. 

At present, large-scale scientific research focuses on the fabrication, manipulation, 

visualization and modeling of metallic systems on the nanometer scale (1×10
-9

 m). The concept 

of nanoscience or nanotechnology was initially expressed in the early 1960’s, by the famous 

American scientist Richard Feynman. In one of his lectures at Caltech, he asked the question 

“how small we can go in the process of miniaturization” [4]. He was fascinated by how 

biological systems, while being so small, are capable of storing such an enormous amount of 

information (e.g. the genetic information encoded in DNA). He challenged scientists to develop 

new technologies which could allow the construction and manipulation, at the atomic level, of 

devices comprising up to a few hundred atoms. Impressive progress has recently been achieved 

in this field thanks to the development of atomic structure theories, experimental microscopy 

techniques and the development of new and powerful computational technologies such as 

massively parallel supercomputing and distributed grid computing. The combination of 

theoretical methodologies and computational tools have proved to be an efficient way for 

tackling scientific problems related to nanometer scale systems [5,6]. 
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The main goal of this work is to understand the structural evolution of bimetallic Cu-Pt 

nanoparticles as a function of their chemical composition and characterize them by DFT 

methods. The general objectives of this research were: 

 To understand the structural evolution of bimetallic Cu-Pt nanoparticles as a function of 

chemical composition. 

 Use DFT calculations to make a reoptimization of selected structures obtained using 

empirical potentials and BCGA to make comparisons.  
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2. EXPERIMENTAL AND THEORETICAL BACKGROUND 

 

2.1 Synthesis and cluster characterization 

The outline of the experimental production (synthesis) and characterization 

(visualization) of nanoparticles becomes important, despite this work has only focused on the 

computational modeling of nanoalloys. One of the most commonly known ways for the synthesis 

of gas-phase clusters is the so-called cluster molecular beam (see Figure 1). 

 

Figure 1. Experiments under collision-free conditions [18]. 

 

The first step in the experimental production of this type of nanoparticle involves the 

evaporation of bulk material in the plate or rod by laser ablation [19]. When producing bimetallic 

nanoalloys, a single metal may be used, or two pure metals. Evaporation can also be performed 

by heavy ion sputtering, magneton sputtering or electrical discharge. This process generates a 

plasma which is then cooled down via collisions with a cold gas (helium or argon), which in turn 

results in condensation and cluster nucleation. Clusters are grown by collisions. Strong cooling 

takes places due to adiabatic and isenthalpic expansion, as the clusters undergo a supersonic 

expansion when passing from the high-pressure condensation region through a narrow nozzle 

into a vacuum. There are no collisions within the supersonic jet and the characteristics of isolated 

clusters can be easily investigated (see figure 2) [6,18,19]. 
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Figure 2. Electron microscopy images of supported nanoalloys. (a) TEM image of Pd6Pt catalyst 

(~ 6 nm), (b) HRTEM image of Ni-Pd nanoparticles (~ 3 nm) and (c) HAADF-STEM image of a 

three-layer cuboctahedral Pd-Au nanoparticle (~ 12 nm) [20,21,22]. 

 

Chemical techniques for cluster production also include chemical reduction, in which 

clusters are generated by reduction of different metal salt solutions in the presence of surfactant. 

Particle size can be controlled by the use of inverse micelles. Electrochemical synthesis involves 

the generation of metals such as Pt, Rh and Ru by reducing of their corresponding salts at the 

cathode [6]. 

Mass spectrometry is an experimental technique used for cluster characterization. This 

method allows the ionization of the cluster which in turn is deflected by an applied electric field. 

By changing the intensity of the electric field, cluster mass can be selected, i.e. cluster particle 

size. X-ray diffraction can determine the structure and crystallinity of the cluster. Z-contrast 

HAADF-STEM is able to reveal the internal structure of the nanoparticle. Topography of the 

nanoparticle can be obtained by AFM. XAS and EXAFS are both based on the fact that each 

element has a unique X-ray absorption spectrum [23]. 

 It becomes evident that the appropriate combination of computational and theoretical 

methods, especially modeling of nanoparticles, with experimental techniques will lead to a 

thorough understanding of the physicochemical properties of nanoparticles. 
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2.2 The transmission electron microscope 

There are two fundamental forms of TEM as is illustrated in a simplified schematic form 

in figure 3. In the conventional or fixed beam form (CTEM) the specimen is illuminated by a 

parallel (or nearly so) beam of electrons. An objective lens forms an image of the specimen in 

parallel with a fixed beam similar to a standard light optical microscope. The bright field image 

is typically phase contrast. In the scanning form (STEM) a small focused probe (of order 1 to 2 

Å in diameter) is scanned across the specimen in raster form. The transmitted electrons that have 

been scattered to large angles form an ADF image that has a strong dependence on the atomic 

number of the atoms in the specimen (Z-contrast). The transmitted electrons that are on the optic 

axis form the BF image which exhibits phase contrast similar to CTEM. 

 

Figure 3. Comparison of CTEM and STEM. Simplified schematic of the CTEM (left) and the 

STEM (right) [24]. 

 

There are a large number of things that can go wrong in an image simulation. The 

proposed specimen structure must be specified in some detail, usually in the form of a list of 

atomic coordinates and atomic numbers in a unit cell. Even less well known is the thickness of 

the specimen. Usually a large sequence of possible specimen thicknesses are calculated and 

compared to experiment. 



16 
 

 

The instrumental (optical) parameters such as the aberration constants (spherical 

aberration constant, etc.) and aperture size of the objective lens and lens defocus must be known. 

Usually defocus is not known very well (particularly in bright field phase contrast). Frequently a 

defocus series is calculated for comparison to experiment. There are also a variety of parameters 

such as defocus spread, illumination angle etc. that are hard to estimate but can influence the 

image [24]. 

There are also many parameters that are solely related to the calculation and have very 

little to do with the microscope or specimen but can dramatically affect the calculation. These 

parameters include the sampling size (pixel size) in the image and slices and the slice thickness 

itself. 

Multi-slice almost always uses an FFT to reduce the total CPU time. The FFT is a 

discrete Fourier transform which repeats the image infinitely in all directions. Although the 

image is only displayed as a single image one should remember that it is really an infinite array 

of identical side-by-side images. This produces a strange effect called the wrap-around error. The 

left side of the image in essence touches the right side of the image (and vice versa) and the top 

of the image touches the bottom of the image (see fig. 6.10 and 6.11 in reference 24). To use the 

FFT each image and slice must obey periodic boundary conditions or be an integer number unit 

cells of the specimen (called a super cell). Interfaces and defects must be embedded inside a 

large super cell (brief discussion in section 6.8 of reference 24). 

In summary, some of the things that need to be specified correctly are: 

 Specimen parameters: atomic coordinates and numbers of the specimen and thickness of 

specimen 

 Instrumental parameters: defocus, Cs, objective aperture, etc. 

 Sampling size: number of pixels in the image and slice and the slice thickness. Ensure 

that the total integrated intensity is at least 0.9 or higher (1.0 to start). Calculations with 

slightly higher or lower sampling should yield the same result if the sampling is adequate. 

 Slice thickness: usually the slices should correspond to the existing atomic layers in the 

specimen. 
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2.2.1 STEM Simulation 

Computer simulation of images has become a routine tool of high-resolution transmission 

electron microscopy (conventional and scanning) of materials. The resolution of high resolution 

CTEM or STEM graphs of materials are primarily limited by the aberrations of the lenses in the 

microscope and multiple scattering in the specimen [25]. 

Even for very thin specimens, the imaging electrons will likely interact strongly enough 

with the specimen to be scattered more than once while traveling through the specimen. This 

multiple scattering may influence the image in unexpected ways such that the image is no longer 

related to the specimen structure in a simple manner. The goal of image simulation is to 

understand this image structure better. In summary the main goals of image simulation are: 

Understanding: Image simulation may help to understand the detailed structure in the 

image to separate what is due to the specimen, what is due to the instrument and to help unravel 

the effects of multiple scattering. 

Improvement: Image simulation may help to understand how the image is formed and 

generate intuition on ways to improve the image and instrumentation [24]. 

There are a variety of image calculation programs in existence. Many have been written 

for private use only. Some have been made available commercially and some are available as a 

free download. A partial list of some programs is shown in table 1. 
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Table 1. Some image simulation software packages appearing in the literature or on-line. Type 

M is multi-slice and type B is Bloch-Wave. Some of the listed programs may be commercial. 

Many other private programs likely exist [24]. 

Program Author Year 

SHRLI O’Keefe and Buseck 1978 

TEMPAS Kilaas 1987 

EMS Stadelmann 1987 

NCEMSS O’Keefe and Kilaas 1988 

TEMSIM Kirkland 1998 

JEMS Stadelmann 2004 

WebEMAPS Zuo 2005 

HAADF-STEM Logsdail, Li and Johnston 2012 

 

2.3 Nanoalloys 

Metallic nanoparticles have been the subject of study for around three decades, while 

only during the past fifteen years there has been a boom in the interest in bi- and multimetallic 

clusters, known as nanoalloys. Nanoalloys are unique materials with special characteristics, as 

they represent a type of finite-size objects. By controlling the size, composition and degree of 

chemical ordering (degree of mixing) [1,5,6,7,8] the chemical and physical properties of these 

novel materials can be modified. Catalytic conversion in the treatment of exhaust gases (e.g. CO) 

represents one of the main industrial applications of metal nanoparticles and nanoalloys. These 

gases are generated as products of incomplete combustion in car engines and other industrial 

processes, contributing to air pollution, acid rain and global warming effects. 

 

2.3.1  Homotops 

The term homotop was coined by Julius Jellinek [8,9] to describe alloy cluster isomers 

(AmBn) with a fixed number of atoms (N = m+n) and composition (m/n ratio) that is the case of 

bimetallic nanoalloys (e.g. Pd-Pt, Pd-Au, Ag-Pt, Cu-Pt, Ag-Au). These isomers possess the same 



19 
 

geometrical disposition of their atoms but differ in the way in which A and B type atoms are 

arranged. The number of homotops is defined by the next expression: 

 

NH is maximum when NA = NB, in other words for the 50:50 mixture.  Therefore, the number of 

homotops increases combinatorially, making the global optimization search a difficult endeavor. 

 

2.4.2 Segregation in nanoalloys 

The chemical ordering of the atoms A (in red) and B (in yellow) within the nanoalloy 

structure will create a characteristic mixing pattern. Figure 4 shows different possible ways in 

which these two types of atoms can be arranged, according to mixed or segregated behavior. 

 

Figure 4. Different segregation arrangements found in nanoalloys [6]. 

 

(or Janus particles) 
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2.3.2.1 Segregated configurations 

Segregation in bimetallic nanoalloys can be found in different arrangement of atoms: 

 Core-shell: One element (A) occupies core positions in the nanoparticle, while a shell, 

created of B atoms, completely surrounds the core. 

 Onion-like: Usually found in medium-large clusters, in which clusters present a layered 

A-B-A alternating shell pattern. 

 Layered: These structures (aka. Janus particles) minimize the number of A-B bonds. 

They are in contact only at a small interface. 

 Random mixing: The so called “alloyed” nanoparticles possess randomly mixed patterns, 

corresponding to bulk solid solutions. 

 Ordered mixing: Pseudo-crystalline regular arrangements of A-B atoms. 

 

 The type of segregation present on a specific nanoalloy depends on many factors such as:  

 Bond strength. This relates to the relative strengths of A-A, B-B and A-B bonds between 

metal atoms. If the homonuclear bonds are stronger segregation is preferred, while 

stronger A-B bonds will favor mixing. 

 Surface energy. The metal with the lowest surface energy will segregate to nanoparticle 

surface sites. 

 Atomic size. This is related to the release of strain effects in the nanoparticle itself, with 

the smaller atom tending to occupy core positions. 

 Charge transfer. This means that the most electronegative atom will tend to occupy 

surface sites. 

 Strength of binding to ligands. The metal which binds more strongly to the ligand will 

prefer to occupy surface sites (especially true for passivated clusters). 

 Specific electronic effects. For certain metals, specific electronic effects may play an 

important role in determining segregation. 
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For a given size and composition for a specific nanoalloy, in terms of their geometrical 

disposition and chemical ordering and electronic structure, a problem arises when trying to 

determine the most stable cluster (GM) [10-17]. Once this issue is cleared up, structure-property 

relations can be investigated. 

 

2.4.1 Cu monometallic properties 

Copper nanoparticles play an important role in several relevant technological 

applications, for example in metallurgical and petrochemical applications, being significant in 

automobile exhaust purification as a substitute for the more expensive transition metal (Pt and 

Ru) components of catalytic converters. Carbon monoxide (CO) chemisorption on high purity 

copper has been the subject of several investigations. There are reports showing that CO 

adsorption takes place on top of the three fold Cu(111) hollow and Cu(001) bridge-sites. For the 

Cu(111) hollow, the C-O bond stretching frequency of the CO changes upon adsorption from 

2145 cm
-1

 to 2070 cm
-1 

[26]. It is observed that as the coordination number of Cu increases the 

Cu-CO bond also increases. On the other hand, during Cu-CO bonding, the inward relaxation of 

the top layer and the buckling amplitudes are reduced. Spin unrestricted DFT has been used to 

predict the most stable spin multiplicity for Cu2-CO [27]. This spin multiplicity was found to be 

2S + 1 = 1 (singlet). The vibrational stretching frequency of CO is 2161 cm
-1

 and the adsorption 

energy of the Cu-CO is 17.2 kcal/mol, which is in agreement with the experimental value 

reported by Zeinalipour et al [27]. The latter researchers also showed that Cu4-CO clusters relax 

into a planar structure with Cs symmetry. 

 

2.4.2 Pt monometallic properties 

Platinum (Pt) makes an excellent catalyst when used as an anode in pure H2 in fuel cells. 

The presence of CO in the mixture, however makes Pt unsuitable because it binds strongly to the 

metal when its concentration is 20 ppm or higher. Pt (111) shows a theoretical adsorption energy 

of CO-Pt of -1.39 eV (experimental value: -1.49 eV) when binding to the top Pt sites [28]. 
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2.4.3 Comparison of Cu and Pt monometallic clusters 

The correlation between transition metals and vibrational frequencies of the CO bonding 

stretching (VCO) adsorption is shown on Figure 5. For Cu2-CO the bridging C-O stretching 

frequency is higher at around 2115 cm
-1

 than Pt2-CO which is around 2090cm
-1

. The increasing 

population of the d-shell of any given quantum number, n, significantly augments the adsorption 

energies of CO (see figure 6). In this case, Cu2-CO adsorption energy has a value of around 18 

kcal/mol lower than that for Pt (42 kcal/mol). This means that Cu binds more weakly to CO, 

reducing the chance of Pt poisoning in the bimetallic alloy [29]. 

 

Figure 5. The vibrational C-O stretching fre-  Figure 6. Experimental and cal- 

quency of M2-CO transition metalcarbonyl  culated CO adsorption energies 

clusters [27].      on transition metal clusters. The           

open white squares represent  

M2-CO, the solid squares re-   

Present M4-CO and the trian- 

gles represent experimental 

values [27]. 

2.4.4 Cu-Pt bimetallic properties 

Differences in Cu-Pt alloys come about due to the fact that Cu is a third-row quasi-noble 

metal and Pt is a fifth-row noble metal. Another notable distinction is electronegativity, Pt =2.28, 

Cu = 1.90, which explains Pt’s propensity to attract electrons towards it. 
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The synthesis of Cu-Pt nanoclusters includes a variety of methods [30,31,32]. One of 

these procedures includes the immersion of the CuPt in a solution of glycol and water in the 

presence of PVP.  This is a reduction method. When formed experimentally, Cu-Pt clusters 

contain different molar ratios, possess fcc structure [33], are spherical, elongated [34] and have a 

mean particle size of 8 nm [6]. Cu-Pt NSAs could potentially facilitate highly selective 

hydrogenation reactions at low temperatures. The use of Cu-Pt NSAs facilitates H2 dissociation 

due to the weak atomic hydrogen bonding [36]. This makes Cu-Pt nanoalloys good potential 

anodes in fuel cells. Computational studies of Cu-Pt nanoparticles have used structures with 

symmetries C3v, D2d, D4h. The absorption of ethylene in Cu12Pt2 clusters has been investigated 

[35]. The relative stability of the different isomeric structures follows the order: C3v>D2d>D4h 

[34]. One of the reasons for this addition of Pt to Cu is because it modifies the valence spd-band 

of the cluster improving its catalytic characteristics [36].  

The existence of a linear correlation between near-surface transition metal alloys and H 

and CO binding energies has been proved. This is shown in Figure 7. In the diagram, Cu/Pt is in 

the middle with a CO binding energy of around -1.5eV and a H binding energy of around -2.75 

eV. This means H bonding and CO bonding are both in the middle of the range and so neither is 

strongly preferred, therefore both association and dissociation can take place [28]. 
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Figure 7. The H binding energy (eV) and CO binding energy (eV) of various transition metal 

nanoalloys [28]. 

Puig-Molina et al. reduced and re-oxidized Cu-Pt nanoalloys. XANES was used to 

observe the change in structure. These researchers found that upon reduction the XANES 

showed the CuPt cluster was not metallic Cu, Cu/Pt nor Cu3Pt. They concluded it probably 

formed another alloy. It was also shown that upon re-oxidation the Cu/Pt structure was different 

from the fresh sample [37]. 

 The CuPt phase diagram shows ordered phases: CuPt, Cu3Pt, CuPt3 and a 1D-LPS [38] 

(see figure 8). The preferred structures and types are given in Table 2. Figure 8 also shows the 

amount of mixing between the Cu and Pt atoms. CuPt has 50% Pt as is expected and becomes a 

liquid at around 1085 K. Cu3Pt has around 15% Pt which is lower than expected and becomes a 

liquid around 1005 K. 1D-LPS around 30% Pt and becomes a liquid at around 691 K.  
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Figure 8. The bulk phase diagram of CuPt [38]. 

 

Table 2. CuPt crystal structures and lattice parameters [38]. 

Phase Structure Type a[nm] c[nm] 

Cu3Pt cub Cu3Au 0.3682  

1D-LPS tetr Cu3Pd 0.3715 0.3699 

CuPt Hex CuPt 1.0713 1.3192 

CuPt3 cub  0.38492  
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2.5 Genetic algorithms and the optimization of cluster geometries 

Genetic algorithms (GA) were proposed by John Holland in the 70s. They have been used in 

diverse areas such as chemistry, physics, economy and computer science. These algorithms were 

inspired in the biologic process of evolution [82]. 

The search for the lowest potential energy configuration of an atomic nanocluster is a 

global optimization problem. One of the key aspects of the study of cluster potential energy 

surfaces (PES), is the number of local minima—that is, of stable configurations—that lie on the 

PES. This number increases exponentially with the cluster size. The number of local minima on 

the PES of a Lennard-Jones (LJ) cluster with size N = 100, according to the last estimates [84], 

should be larger than 10 [40]. 

The global optimization of clusters consists in finding, size and chemical composition 

being fixed, the structural and chemical arrangement of the lowest lying minimum on the PES 

[41-46]. To our purposes we may refer to clusters as individuals represented by its atomic 

coordinates which in biological terms would be its chromosomes [82]. With these elements we 

produce an initial population that will iterate throughout the following steps: 

 

Selection. It is how the individuals are selected for crossover. Random selection methods 

can be used such as the roulette wheel which assigns a probability of being selected 

proportionally to the individual fitness. 

Mating. Defines how the parent's chromosomes are combined to produce offspring. 

Figure 9 shows two examples of commonly techniques for mating.  
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Figure 9. Schematic representation of the crossover operation in a generic GA. (a) One-point 

crossover—two parents are cut at the same point and offspring are formed by combining 

complementary genes from parents. (b) Two-point crossover—two parents are cut at the same 

two points [47]. 

 

 

Mutation. Mating does not introduce new genetic material into the population. This can 

lead to an optimization that always converges to the same non-optimal solution. Mutation 

consists on making a few random changes in selected genes of a randomly chosen individual 

[48].  

 

 

Natural selection. These two variation generating processes do not always yield indivi-

duals which are better adapted according to the fitness criteria and therefore a selection 

mechanism is also needed to pick up better solutions from a pool of new born individuals [83]. 
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2.6. DFT 

Density functional theory is an extremely successful approach for the description of 

ground state properties of metals, semiconductors, and insulators. The main idea of DFT is to 

describe an interacting system of fermions via its electronic density and not via its many-body 

wave function. For N electrons in a solid, which obey the Pauli principle and repulse each other 

via the Coulomb potential, this means that the basic variable of the system depends only on three 

-the spatial coordinates x, y, and z- rather than 3*N degrees of freedom. 

Despite recent improvements, there are still difficulties in using density functional theory 

to properly describe intermolecular interactions, especially van der Waals forces; charge transfer 

excitations; transition states, global potential energy surfaces and some other strongly correlated 

systems; and in calculations of the band gap in semiconductors. Its incomplete treatment of 

dispersion can adversely affect the accuracy of DFT in the treatment of systems which are 

dominated by dispersion [53] or where dispersion competes significantly with other effects [54]. 

The development of new DFT methods designed to overcome this problem, by alterations to the 

functional [55] or by the inclusion of additive terms [56,57,58] is an important research topic. 

This technique is based on the Hohenberg and Kohn theorem [59,60], which states that 

the energy for a given type of Hamiltonian operator may be described by a unique functional of 

the density. Since the electronic energy is a unique functional of the electronic density (r), the 

electronic energy Ee[] of a system of interacting ions and electrons may be expressed as a 

unique functional F[]: 

 

where vext(r) is an external potential of the electron gas, Eion ({RI }) is the ion– ion interaction 

energy of the ions at fixed positions RI, and F[ρ] is the universal functional of ρ independent of 

vext(r). Thus F[ρ] is the same functional for electrons in atoms, molecules, polymers or solids. 

Unfortunately, the exact form of this functional F[ρ] is unknown. However, reasonable 

approximations to it are now available such as the LDA, the GGA and, so called, hybrid methods 

[59]. 

http://en.wikipedia.org/wiki/Intermolecular_force
http://en.wikipedia.org/wiki/Van_der_Waals_force
http://en.wikipedia.org/wiki/Strongly_correlated_material
http://en.wikipedia.org/wiki/Band_gap
http://en.wikipedia.org/wiki/Semiconductors
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In general, DFT is the most cost effective method for achieving a high degree of accuracy 

at the quantum-mechanical level.  The reliability of DFT results (when calculating properties) 

depends sensitively on how well the property is described by the electron density, or how the 

property relates to the electron density. 

One way of reducing the computational complexity of DFT, and making large systems 

(or heavy elements) or longer simulations more practical, is to use a combination of basis sets 

and inner-core pseudopotentials [61]. 

The foundations of modern DFT were published in the classic papers of Hohenberg and 

Khon in 1964, and Kohn and Sham one year later [60,62]. They developed an exact variational 

principle formalism in which ground state properties, such as: total electronic energy, 

equilibrium positions and magnetic moments are expressed in terms of the total electronic 

density. The two fundamental theorems state that: 

 Hohenberg and Kohn Theorem: The ground state density of a bound system of 

interacting electrons in some external potential determines this potential uniquely, as well as the 

ground state wave function. Also since electronic density determines both, the total number of 

electrons, N and the external potential; it also provides a full description of all the ground-state 

observables, which are functional of the electron density [63]. 

 The second statement of the Hohenberg-Kohn theorems states:  the ground state energy 

and the ground-state density of a system characterized by an external potential, can be obtained 

by using the variational principle. In other words, the ground state energy can be expressed as a 

functional of the ground state density [59].  
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 So, this theory established the existence of a universal functional, which is independent 

of the external potential i.e. which has the same functional form for any system considered. From 

the Hohenberg-Kohn theorems are derived the Kohn-Sham equations [64]. These equations solve 

the problem of the complex many electron Schrödinger equations, by transforming them into a 

set of N single-electron equations, which need to be solved self-consistently. 

[ 
 

 
    ( ⃗)  ∫

 ( ⃗)

| ⃗   ⃗ |
   ⃗     [ ( ⃗)]]   ( ⃗)      ( ⃗) 

with an electronic density: 

 ( ⃗)  ∑|  ( ⃗)|
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3. COMPUTATIONAL METHODOLOGY 

 

3.1 The Gupta Potential 

The Gupta potential was originally designed to deal with inconsistencies between experimental 

data and computer simulation [65]. Now is used to model inter-atomic interactions in metal 

systems [66]. It is a semi-empirical many body potential derived within the tight-binding second-

moment approximation. Many-body potentials advantage additive potentials in reproducing 

some basic properties for metallic systems.  

The configurational energy of a cluster is written as the sum over all the atoms of 

attractive and repulsive energy components: 

      ∑{  ( )    ( )}

 

 

 

where the Born-Mayer pair repulsive term V
r
(i) is expressed as: 
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  (   )(
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  )

 

   

 

and the many-body attractive term V
m
(i)  is expressed as: 

  ( )  √∑  (   ) 
   (   )(
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  )

 

   

 

α and β represent the atomic species of atoms i and j, respectively. A, ξ, p and q are the potential 

parameters that are usually fitted to experimental properties of bulk metals and alloys, such as 

the cohesive energy, lattice parameters, and independent elastic constants for the reference 

crystal structure at 0 K. r0 denotes the nearest neighbor distance of the pure bulk elements, often 

taken as the average of the pure distances, but it can also be taken as the experimental nearest-

neighbor distance in some specific ordered bulk alloy. rij is the distance between atoms i and j 

[65].  
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 Values of the Gupta potential parameters describing Pt-Pt and Cu-Cu interactions are 

taken from the work of Cleri and Rosato [66]. These values are listed in the table below. 

 

Table 3. Gupta potential parameters [65]. 

parameter Cu-Cu Pt-Pt 

A 0.0855 0.2975 

ξ 1.224 2.695 

p 10.960 10.612 

q 2.278 4.004 

r0 2.556 2.775 

 

3.1.1 Parameterization of the Gupta Potential 

A previous study on nanoalloys concluded that parameters obtained by averaging the 

parameters of pure elements, gave a good qualitative fit to previous experimental and theoretical 

studies of bimetallic clusters [67]. In this study, the heteronuclear Cu-Pt Gupta potential 

parameter set {P} is derived as the weighted average of the corresponding pure metal Cu-Cu and 

Pt-Pt parameters: 

P(Cu-Pt) = w1P(Cu-Cu) + w2P(Pt-Pt) 

Weighting parameters have been investigated in the range 0 ≤ w ≤ 1, in steps Δw = 0.1. 

This is called symmetrical weighting of all parameters, since all of the parameters vary in the 

same way. That is, from the value for Pt-Pt (w = 0) to the value for Cu-Cu (w = 1) [52]. 

Therefore, the Gupta potential parameters {P} = {A, ξ, p, q and r0} are obtained as: 

P(Cu-Pt) = wP(Cu-Cu) + (1 - w)P(Pt-Pt) 
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Table 4. Parameter set values.  

w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A 0.2975 0.2763 0.2551 0.2339 0.2127 0.1915 0.1703 0.1491 0.1279 0.1067 0.0855 

ξ 2.695 2.548 2.401 2.254 2.107 1.960 1.812 1.665 1.518 1.371 1.224 

p 10.612 10.647 10.682 10.716 10.751 10.786 10.821 10.856 10.890 10.925 10.960 

q 4.004 3.831 3.659 3.486 3.314 3.141 2.968 2.796 2.623 2.451 2.278 

r0 2.775 2.753 2.731 2.709 2.687 2.666 2.644 2.622 2.600 2.578 2.556 
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3.2 The Birmingham Cluster Genetic Algorithm 

 The Birmingham Cluster Genetic Algorithm (BCGA) is a program that has been used to 

find the putative local minima as well as other low-lying energy structures [78].  The operation 

of this GA optimization program is shown in figure 10. 

 

Figure 10. Flow chart for the BCGA program [47,48]. 
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For a given cluster size (N), a number of clusters, (Npop, typically from 10 to 30) are 

generated at random to form the initial population. The x, y and z coordinates are real values on 

the Cartesian space [49]. These values are chosen randomly in the range [0,N
1/3

] [47]. This 

ensures that the cluster volume scales correctly with cluster size (i.e. linearly with N). All of the 

clusters in the initial population are then relaxed into the nearest local minima, by minimizing the 

cluster potential energy as a function of the cluster coordinates, using the quasi- Newton L-

BFGS routine [50,51]. 

As the cluster GA is being used to minimize the cluster potential energy (Vclus), the 

lowest energy clusters have the highest fitness and the highest energy clusters have the lowest 

fitness. 

Dynamic scaling is achieved by using a normalized value of the energy, ρ, in the fitness 

calculations: 

   (       ) (         ) 

where Vmin and Vmax are the lowest and highest energy clusters in the current population, 

respectively. The most common fitness functions that have been used are:  

Exponential: 

         

where α is typically set to 3. 

Linear: 

           

Hyperbolic tangent: 

   
 

 
[       (     )] 

The choice of fitness function controls how rapidly fitness falls off with increasing 

cluster energy. 
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The selection of parents is accomplished using either roulette wheel or tournament 

selection. In both of these selection schemes, low energy clusters are more likely to be selected 

for crossover and therefore to pass their structural characteristics on to the next generation. Once 

a pair of parents has been selected, they are subjected to the crossover operation. 

Crossover in this implementation consists of random rotations that are performed on both 

parent clusters and then both clusters are cut horizontally about one or two positions parallel to 

the xy plane, and complementary fragments are spliced together. For the single cut method, the 

cutting plane can be chosen at random; it can be defined to pass through the middle of the 

cluster, or weighted according to the relative fitness of the two parents. For the double cut 

method, the cutting planes are chosen at random.  

Crossover continues until a predetermined number of offspring (Noff) have been 

generated. The number of offspring is generally set to approximately 80% of the population size. 

Each offspring cluster is subsequently relaxed into the nearest local minimum, as described 

above. The local minimization step obviously changes the structure of the offspring cluster, and 

this structural rearrangement will be greatest in the region of the join between the two fragments 

donated by its parents. As the clusters get larger, however, the perturbation due to the local 

minimization should become relatively smaller and confined to the join region. In this way, the 

principle of schemata should apply, as parents with high fitness are more likely to have fit 

offspring by passing on fragments with low energy arrangements of atoms. 

 

Figure 11. Schematic representation of the Deaven–Ho cut and splice crossover operation, as 

implemented in our GA program. (Single cut crossover is shown) [47]. 
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In an attempt to avoid stagnation and to maintain population diversity, a mutation 

operator is introduced, whereby each individual has a probability (Pmut) of undergoing mutation. 

The mutation perturbs some or all of the atoms within the cluster. 

 Some of the mutation schemes that can be adopted include: atomic displacement, 

twisting, cluster replacement, atom permutation. After mutation, each “mutant” cluster is 

subsequently relaxed into the nearest local minimum, using the L-BFGS minimization routine. 

The new population is selected from the Npop lowest energy clusters selected from the set 

containing the old population, the new offspring clusters and the mutated clusters. The inclusion 

of clusters from the previous generation makes the GA elitist, ensuring that the best member of 

the population cannot get worse from one generation to the next. 

Once the new generation has been formed, the potential energies of the best (Vmin) and 

worst (Vmax) members of the population are recorded and the fitness values calculated for the 

entire population. The whole process of crossover, mutation and selection is then repeated for a 

specified number (Ngen) of generations or until the population is deemed to have converged. The 

population is considered to be convergent if the range of cluster energies in the population has 

not changed for a prescribed number of generations [47]. 

A considerable amount of effort has been expended in optimizing the GA operations and 

parameters described above [52]. Because of the stochastic nature of the GA, the GA program is 

run several times for each cluster’s nuclearity and for each set of operations/parameters. It is 

generally found that there is not a great dependence of the success rate of finding the global 

minimum structure on the type of fitness function used, though even small improvements are 

useful, especially for larger cluster sizes. For larger clusters, a larger population size and 

maximum number of generations is generally required [47].  

In our instance we use the convergence criterion limited to a maximum of 400 

generations and a population of 40 clusters.  For a given cluster size, 38 in our case, coordinates 

of the atoms are randomly generated and normalized. 
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3.3 Energetic Analysis 

When studying fixed-size bimetallic clusters, the excess (or mixing) energy as a function 

of composition, ΔN, is a useful quantity. For binary nanoalloys with fixed size (N = 38 atoms) but 

different compositions, ΔN is defined as: 

     (      )   
  (  )

 
 (   )

  (  )

 
 

where EN (AM BN-M) is the total energy of a given cluster calculated at the Gupta level and EN (AN) 

and  EN (BN) are the total energies of the global minima of the pure metal clusters (i.e. CuN and 

PtN) [52]. This excess energy is an unbiased quantity, defined as zero for the global minima of 

the pure clusters. Negative values of ΔN indicate that mixing is favorable.  

 

3.4 Chemical Ordering 

Binary nanoalloys generally present more complex structures than monometallic clusters 

and global optimization is more difficult due to the existence of homotops [6], which are isomers 

with the same geometry and composition but with a different arrangement of the two types of 

atoms. For an A-B alloy system, the chemical order parameter, σ is defined as: 

  
              

              
 

where NA-B is the number of nearest-neighbor A-B bonds and NA-A and NB-B denote the numbers 

of homonuclear bonds in the binary cluster [69]. The σ value is positive when cluster segregation 

occurs, close to zero when disordered mixing takes place, and negative when there is more 

ordered mixing including layering and onion-like configurations [16]. 

 



39 
 

3.5 Density Functional Theory 

DFT calculations were performed using the NWChem quantum chemistry package [70] 

and the Perdew-Wang exchange-correlation functional (PW91) [71,72]. The electronic exchange 

energy as a functional of the density may be approximated as: 

  [ ]    ∫     
 

 ⁄  ( ) 

where: 

  
|  |

    
    (    )     ( )  (                    )     

Unlike most other functionals this one is simple enough to be applied routinely in self-consistent 

calculations for atoms, molecules and solids. On the other side is important to note that the self-

consistent valence electron density in an atom is still somewhat too diffuse [71]. 

Often due to the limited accuracy of semiempirical potentials, DFT reoptimization may 

significantly change the energetic ordering of clusters belonging to different structural motifs 

[73]. In order to verify this possibility we chose low energy structures generated by the BCGA 

and performed reoptimization calculations. 

 

3.6 Pair Distribution Function 

The PDF gives the probability of finding two atoms separated by a distance r [74]. This 

function is obtained by integrating the distribution functions over the positions of all atoms 

excluding the two atoms measured. We must also include appropriate normalization factors. We 

use a definition that takes into account the averages over the ensemble atom pairs which is useful 

in computer simulations [75].  
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The PDF is important because it allows the characterization of the lattice structure of the 

nanoalloys [76]. In our study we use it to structurally compare the motifs generated using the 

BCGA technique and the motifs that have been reoptimized with the DFT method. This allows 

an objective and quantitative comparison of the structures.  
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4. RESULTS AND DISCUSSION 

 

4.1 BCGA Structures 

One hundred structures were computed varying its weighting and composition. Structures 

found for a given weighting and composition are not all the same. We chose to keep those with 

the lowest energy. A diagram with a summary of structural variety across compositions and 

weightings is shown below (Figure 12).  

 

 

Figure 12. Structure map for all weightings and compositions. 

 

Structures for a given weighting vary with composition in most cases. For w = 0.0 the 

predominant structure is the TO (Figure 13a). But as the copper atoms proportion increases on 

the mix we can find other lower symmetry motifs. Those include the iMpIh (Figure 13b), the 

iaMpIh and a few Dh symmetries. Except for the pure copper cluster which also has the TO 

structure.  
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For w = 0.6 and w = 0.7 we found exclusively TO structures for all compositions. For      

w = 1.0 and w = 0.9 a wide variety of the mentioned structures was found. Also these weightings 

showed a higher degree of segregation (Figure 13c).  

 

 

 

 

 

 

(a) (b) (c) 

Figure 13. Three remarkable structures.  (a) The TO was the most abundant structure found by 

the BCGA. (b) The iMpIh was also a common structure especially when copper concentrations 

are high. (c) A highly segregated (Janus-type) composition (note that this motif is not included in 

our results because it was not the one with the lowest energy). 

 

4.2 Excess Energy 

We calculated the excess energy for all weightings as a function of composition (Figure 

14). It is clear the increase of excess energy as the weighting goes from w = 0.0 to w = 1.0. For 

compositions with weighting factor of 0.7 and below, the excess energy is negative. A more 

negative excess energy indicates that mixing is favorable. 

  The lowest values for every composition are those of weighing factor w = 0.0. The lowest 

value is -44.0 eV and belongs to the composition Cu26Pt12. For w = 0.8 excess energy remains 

very close to zero. Weightings of 0.9 and 1.0 have all positive, yet small values. The highest 

value is 3.05 eV for w = 1.0 at composition Cu20Pt18.  
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Figure 14. Excess energy for all weightings and compositions. 

 

4.3 TO vs iMpIh, energy comparison.  

The energies of TO and iMpIh were particularly close when using a weighting factor of 

0.6. We made an energy comparison plot in which we subtract the energy of TO to the energy of 

iMpIh. That means that for positive values on the plot TO energy is lower than iMpIh and vice 

versa. 

 

 

 

 

 

 

Figure 15. Energy comparison between iMpIh and TO. 

eV
 

eV
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As we can observe in the plot the iMpIh energy is never lower than the TO energy. But 

their energies happen to match at composition Cu14Pt24.  However, we kept the TO as the 

selected structure for this study.  

 

4.4 Chemical Ordering 

The chemical ordering of the structures found varies along with weighting and 

composition. Of these two quantities weighting has the stronger influence. In general for 

structures with weighting values of 0.0, 0.1, 0.2, 0.3 homogeneous mixing takes place (Figure 

16a). Additionally, when there are very few atoms of Pt we found multi-core-shell structures 

(Figure 16b). We also found some layering profiles for these values of w (Figure 16c).   

  

 

(a) (b) (c) 

Figure 16. Mixing patterns. (a) Structure Cu18Pt20 (w = 0.1) displaying homogeneous mixing. (b) 

Structure Cu34Pt4 (w=0.0) is a multi-core shell structure with 4 cores of Pt. (c) Structure of 

Cu19Pt19 (w = 0.1) shows a layering profile.  

 

For weighing values ranging 0.4-0.7 copper atoms tend to be on the surface, thus 

producing simple core-shell ordering when copper atoms cover the entire surface. On the other 

hand, for weighting values 0.8-1.0 we found a high degree of segregation. The most common 

chemical ordering profile for these weightings was ball-and-cup. We also calculated the number 

of different types of bonds per composition for w=0.5 (Figure 17) [78]. 
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Figure 17. Number of bonds per composition (w=0.5). 

 

Using a program to measure the number of bimetallic bonds [77], we can observe in the 

plot that the number of monometallic bonds is always greater to the bimetallic bonds. Also 

bimetallic bonding is more frequent when there are more Cu atoms.  

 

4.5 Density Functional Theory and Average Nearest Neighbor Distance 

DFT calculations are computationally expensive so we took a few arbitrary structures to 

work with. Reoptimization with DFT did not dramatically change the structural motif. Instead, 

there were small, almost imperceptible, changes in the interatomic distances. We made a detailed 

study of the Cu32Pt6 composition for weighting w = 0.5. We show the structural motifs before 

and after optimization (Figure 18).  
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BCGA DFT 

Figure 18. Comparison after DFT optimization. Structure of Cu32Pt6 (w = 0.5) before (left) and 

after DFT optimization (right). 

 

 DFT optimization did not produce any significant changes in the structure. A more deep 

and precise analysis can be done to establish if DFT reoptimization considerably reduces the 

energy or not. 
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To take a closer look to these small changes we calculated and plotted the ANND. This 

plot compares the GA optimization vs. the DFT reoptimization. Using a program to calculate 

ANND [77] we get the following plot.  

 

Figure 19. ANND of Cu32Pt6 (w = 0.5) before (GA optimization) and after DFT reoptimization.  

There are a few things to point out on the ANND plot. First the DFT plot is slightly 

shifted to the right. This confirms the fact that interatomic distances increased. Also the second 

peak of the GA plot is split in on the DFT plot. This can be due to a small deformation on the 

structure.  

 

4.6 Scanning transmission electron microscopy  

Theoretical results need to provide a point of comparison with experimental data. STEM 

simulation is a simple and yet effective approach to this goal. We performed STEM simulation 

for the composition Cu32Pt6 as sample structure which is weighted by w = 0.0. In the images 

below is easy to notice that the red spots correspond to the Platinum atoms and the violet ones to 

Copper.  
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Figure 20. STEM simulation of Cu32Pt6 (w = 0). The high intensity spots (yellow) show the 

location of the platinum atoms. The violet zone is filled with copper atoms.  

  

 Color intensity on the graph is proportional to the atomic column height as well as the 

atomic number i.e. 29 for Cu and 78 for Pt. Pt atoms are brighter because Pt atomic number is 

higher than Cu [79]. A more advanced technique described by Li et al. can be used to produce a 

three-dimensional representation of the structure [80].  
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5. CONCLUSIONS 

 

Even when there is no experimental fit to compare with, we came across some interesting 

observations. It is apparent from results that a greater variety of structures occurs when 

parameters are biased to Cu characteristics (w→1) or when composition contains a high number 

of Cu atoms. Also a higher degree of segregation was found with the mentioned weighting. On 

the other hand the most stable structures overall are those weighted towards Pt characteristics 

(w→0). Also a higher degree of mixing was noticed with the mentioned weighting. There is a 

preference for the TO structure when there is abundance of Pt atoms or parameters are weighted 

towards Pt. 

  When the weighting parameter is biased towards zero the total excess energy of the 

composition is lower than parameters that tend to 1. STEM simulation successfully produced 

images that can be easily compared with experimental results. 
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