Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12984/8271
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SALAZAR CANIZALES, EDGAR MARTÍN | |
dc.creator | SALAZAR CANIZALES, EDGAR MARTÍN; SACE941030HSRLND03 | |
dc.date.issued | 44050 | |
dc.identifier.isbn | 2208607 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12984/8271 | - |
dc.description | Tesis de maestría en ciencias física | |
dc.description.abstract | Cosmic Microwave Background photons are inverse Compton scattered by energetic electrons in galaxy clusters and distorted by its bulk motion in a process known as the Sunyaev-Zel’dovich (SZ) effect. Conventional methods that calculate cluster peculiar velocities require additional information like the thermal component (tSZ) or underlying electron density ne to estimate each cluster’s optical depth Ƭ, however observational measurements contain large errors and biases. This work studies the feasibility of using deep learning regression algorithms for estimating individual cluster peculiar velocities from the simulated kinematic (kSZ) component signal, thus exempting the need of Ƭ. This formalism is tested using the Magneticum cosmological hydrodynamical simulation. Both tSZ and kSZ, along with ꬴ maps were generated at z = [1:041:32]. Trials with a simple convolutional neural network yielded prediction error standard deviations as low as ꬴ= 11:019 kms-1; whilst both methods implementing Ƭ’s explicit calculation yielded standard deviations of 81:569 kms-1 using tSZ and 87:527 kms-1 for ꬴ. The neural network provided reliable predictions for studying LSS velocity fields using the pairwise velocity estimator v12, in addition to improved correlation compared to conventional methods. | |
dc.description.sponsorship | Universidad de Sonora. División de Ciencias Exactas y Naturales, 2020 | |
dc.format | ||
dc.language | Inglés | |
dc.language.iso | spa | |
dc.publisher | Universidad de Sonora | |
dc.rights | openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4 | |
dc.subject.classification | RADIACIÓN (ELECTROMAGNÉTICA) | |
dc.subject.lcc | QB991.C64.S24 | |
dc.subject.lcsh | Radiación del fondo cósmico | |
dc.subject.lcsh | Astrofísica | |
dc.title | Peculiar velocity estimation from Sunyaev-Zel'dovich effect simulated signal using deep learning | |
dc.type | Tesis de maestría | |
dc.contributor.director | Feldman, Hume; 0000-0001-7014-2176 | |
dc.degree.department | Departamento de Investigación en Física | |
dc.degree.discipline | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
dc.degree.grantor | Universidad de Sonora. Campus Hermosillo | |
dc.degree.level | Maestría | |
dc.degree.name | Maestría en ciencias física | |
dc.identificator | 221213 | |
dc.type.cti | masterThesis | |
Appears in Collections: | Maestría |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
salazarcanizalesedgarmartinm.pdf | 6.32 MB | Adobe PDF | ![]() View/Open |
This item is licensed under a Creative Commons License